ОТЗЫВ

официального оппонента Ахмадиева Наиля Салаватовича на диссертационную работу Сокова Сергея Александровича «Синтез, свойства и реакции присоединения новых ениновых акцепторов Михаэля», представленную на соискание ученой степени кандидата химических наук по специальности 1.4.3. Органическая химия

1. Актуальность темы диссертационной работы.

Химия ацетиленовых соединений по праву можно считать одним из трендовых направлений в органической химии. Ацетиленовые молекулы в силу высоко ненасыщенности тройной связи и СН-кислотности в терминальном положении, являются важными стартовыми соединениями в промышленном и тонком органическом синтезе. Расширение ассортимента использования ансамблей ацетиленсодержащих систем может реализоваться карбонилсодержащих эквивалентов. Реакшионная использования ИХ способность амбидентных пропиналей (1,3-биэлектрофилы) обуславливает способность вступать в реакции с широким кругом нуклеофилов и диполей, как хемоселективно по С≡С связям, а также по карбонильной группе или одновременно по обоим реакционным центрам, посредством тандемных или мультикомпонентых домино-реакций. Высокая реакционная способность и коммерческая (препаративная) доступность ацетиленовых альдегидов делает их уникальными *«строительными блоками»* в дизайне новых материалов (оптоэлектронных материалов, молекулярных машин) и фармакологически значимых соединений. Следует отметить рациональный подход к получению библиотек химических соединений присоединением СН-кислот к пропиналям, что позволяет в одну препаративную стадию удлинять углеродную цепь и вводить разнообразные заместители В целевые молекулы, включая фармакофорные группы. Кроме того, последние исследования показывают, что большинство этих продуктов изначально могут проявлять противораковую активность в диапазоне от наномолярных до микромолярных, воздействуя на различные раковые мишени (ДНК, топоизомеразы I,II и киназы), что, безусловно, является актуальным при целенаправленном конструировании молекул с противораковой активностью.

Представленная Соковым С.А. диссертационная работа посвящена разработке методологии синтеза электронодефицитных 1,3-енинов реакцией СН-кислот с пропиналями. Дальнейшие трансформации универсальных аддуктов Михаэля позволили получить карбо- и гетероциклические соединения, пиридиновые бетаины, пушпульные диены. Разработанная методология характеризуется атом-экономным способом синтеза енинов, а также содержит другие признаки "зеленого синтеза" — использование органокатализаторов и "экологичных" растворителей. В этой связи настоящая работа, направленная на изучение новых ениновых акцепторов Михаэля в условиях реакций присоединения, представляется актуальным исследованием. Дополнительным подтверждением востребованности представленных исследований является выполнение работы в рамках государственного задания Минобрнауки России (FEUR – 2022-0007).

2. Научная ценность и новизна.

Соискателем впервые показано, что реакции а-ацетиленовых альдегидов

с соответствующими СН-кислотами позволяют сформировать фураноновый и тетрагидро-2H-пирановый циклы. Отмечено влияние характера реакционной среды и природы используемых конденсирующих агентов на образующиеся продукты.

Представлены методы синтеза ениновых производных кислоты Мельдрума из коммерчески доступных реагентов. Для полученных соединений подробно изучены особенности кристаллического строения, проведена оценка реакционной способности и региоселективности в реакциях с N-, S-нуклеофилами (алкил- и ариламины, napa-замещенные тиофенолы). Ениноны реагируют исключительно по $C \equiv C$ связи, при комнатной температуре и отсутствия катализатора, при стерической затрудненности двойной связи для нуклеофильной атаки. Приведены исследования фрагментации молекулярных ионов большинства полученных соединений.

Отличным, от разработанной методологии по синтезу енинов с участием 1,3-дикарбонильных СН-кислот, является протекание реакции 2,4-пентандиона с фенилпропиналем в присутствии каталитического количества ДБУ с селективным образованием ранее неописанного тетрагидро-2*H*-пирана с участием четырех моль исходных субстратов.

Установлено, что в реакции арилпропиналей и малоновой кислоты в присутствии эквимольного количества замещенных пиридинов проходит конденсацией в трехкомпонентном варианте с образованием новых пиридиновых бетаинов — 2-карбокси-5-арил-5-(пиридин-1-иум-1-ил)пента-2,4-диеноатов.

Отмечена высокая реакционная способность синтезированных полицентровых акцепторов Михаэля (енины, содержащие карбоксильные и сложноэфирные группы) и закономерности протекания реакции последних с 1,3-диполями. Показано, что енины реагируют с диазометаном селективно по экзоциклической C=Cсвязи. При ЭТОМ взаимодействие пропаргилиденмалоновой кислоты и ее эфиров с диазометаном приводит к образованию изомерных пиразолинов (минорным является 2,4-дигидро-3*H*пиразолин). В случае ениновых производных кислоты Мельдрума аналогичная реакция приводит к спироциклическим циклопропанам.

Проведена предварительная оценка цитотоксичности серии новых синтезированных соединений по отношению к клеточным линиям HS-5, NCI-H460 и SK-MEL-28.

3. Практическая значимость диссертационной работы. Диссертантом предложен ряд методов для получения новых функциональных производных кислород- и азотсодержащих гетероциклов, пиридиновых бетаинов (2-карбокси-5-арил-5-(пиридин-1-иум-1-ил)пента-2,4-диеноатов), ениновых дикарбоновых кислот и их эфиров, ениновых производных кислоты Мельдрума. Разработан стереоселективный одностадийный метод получения пушпульных бута-1,3-диенов на основе трехкомпонентной реакции α-ацетиленовых альдегидов, диметилмалоната и циклических аминов.

Приведенные общие закономерности фрагментации молекулярных ионов в условиях масс-спектрометрии электронной ионизации полученных в работе новых веществ позволяют сформировать более полные представления о пропаргилиденовых производных кислоты Мельдрума, димедона, ениновых производных эфиров.

Результаты первичного скрининга методом МТТ-теста цитотоксическую активность по отношению к опухолевым клеточным линиям отдельных синтезированных соединений (21 соединение) показали умеренную цитотоксичность по отношению ко всем исследуемым клеточным линиям. На основании значений выживаемости(%), соединениями лидерами являются содержащие своей молекулы на основе енинонов, структуре диметилмалонатный и гекс(гепт)-2-ин-1-илиденовые фрагменты, что позволяет предположить возможность дальнейшей диверсификации структур с целью повышения таргетного действия.

- 4. Обоснованность и достоверность научных положений, выводов и Научные положения и выводы, сформулированные в диссертационной работе Сокова С.А. (в виде шести тезисов), представлены и корректно, обсуждены соответствии В представлениями органической химии в области ацетиленовых соединений, а также енинов и пушпульных бута-1,3-диенов, представляющих интерес в качестве соединений с биологической активностью. В диссертационной работе в рамках темы исследования использован обширный материал научной литературы преимущественно за последние 15 лет, включая собственные соискателя. Обозначенная проблематика региоселективного синтеза и реакционной способности полифункциональных акцепторов Михаэля позволила диссертанту сформулировать цель работы и ее диссертационной работе в качестве исходных используется синтезированный диссертантом широкий ассортимент стабильных α-ацетиленовых альдегидов, в том числе и кремнийзамещенные пропинали. Систематические исследования реакции конденсации Кнёвенагеля с участием субстратов с различными заместителями позволило разработать способы получения целевых новых пропаргилиденовых (ениновых) производных, содержащие функции малоновой кислоты, малонового эфира, 2,2-диметил-1,3-диоксан-4,6-диона малонодинитрила. Достоверность И экспериментальных результатов подтверждается современными методами анализа: спектроскопией ИК, УФ, ЯМР ¹Н и ¹³С (с привлечением двумерных спектров ¹H-¹H COSY, NOESY и ¹H-¹³C HSQC, HMBC, HMQC), ЯМР ¹⁹F, рентгеноструктурного метода анализа, элементным микроанализом, массспектрометрией (HRMS и ГХ-МС).
- 5. Соответствие содержания диссертации указанной специальности. Представленный материал диссертационной работы, в которой изложены данные по новым методам синтеза новых строительных блоков на основе СН-кислот (малоновая производных кислота и ее малонодинитрил, кислота Мельдрума, бензоилацетон), оценки их реакционной изучение цитотоксичности, соответствует способности, ИХ специальности ВАК РФ 1.4.3.Органическая химия, а именно пунктам: 1. "Выделение и очистка новых соединений"; 3. "Развитие рациональных путей синтеза сложных молекул"; 7. "Выявление закономерностей типа «структура свойство»"; 10. "Исследование стереохимических закономерностей химических реакций и органических соединений".
- **6.** Структура диссертации и ее содержание. Представленная к защите диссертационная работа Сокова С.А. изложена на 126 страницах машинописного текста и написана в научном стиле. Структура и объем

диссертации соответствует требованиям, предъявляемым к научноквалификационным работам. Диссертационная работа состоит из введения (6 стр.) и трех глав, включая литературный обзор (глава 1, 17 стр.), обсуждение результатов (глава 2, 47 стр.), описания экспериментальных методик (глава 3, 28 стр.), а также заключения (2 стр.), перечня используемых в работе сокращений (1 стр.) и списка литературы (265 наименований). Для наглядного представления материала квалификационной работы использованы 11 таблиц, 10 рисунков и 60 схем.

Во введении обоснована актуальность темы исследования, определены цель и задачи, научная новизна, сформулированы основные положения, показаны теоретическая и практическая значимости работы.

В главе Литературный обзор (С. 10 – 26 диссертации), материал на тему «а-Ацетиленовые альдегиды: основные подходы к синтезу и реакционная способность», систематизирован по пяти разделам, в которых обобщены последние достижения в химии α-ацетиленовых альдегидов. внимание сфокусировано на реакциях пропиналей с нуклеофильными реагентами (амины, диамины, аминоспирты, 2-аминоэтантиол, дитиолы), в том числе СН-кислотами. При этом, реакции пропиналей с СН-кислотами могут протекать с образованием енинов и гетероциклических структур (производные фурана, лактонов, 2-пиридон) в зависимости от природы исходных соединений, содержащих метиленактивное положение, используемых каталитических систем и условий проведения реакции. Автор отмечает, что имеющиеся сведения взаимодействию 1,3-дикарбонильных соединений ацетиленовыми альдегидами ограниченны (например, кислота Мельдрума). Отдельный раздел посвящен *one-pot* трехкомпонентным реакциям с участием нуклеофильных агентов, генерируемые катализаторами. В конце главы автор делает заключение, что проведенная систематизация литературных данных, позволяет обосновать необходимость проведения исследований, связанных с разработкой методологии синтеза новых блок-синтонов на основе пропаргилиденовых производных СН-кислот.

диссертационной работы занимает собственных результатов и состоит из девяти разделов (С. 27 - 73). Во второй главе показано, что реакции СН-кислот с а-ацетиленовыми альдегидами в основном приводят к образованию продуктов конденсации Кнёвенагеля – новым реакционноспособным енинам (полицентровые акцепторы Михаэля). В образование кислородсодержащих отдельных случаях происходит гетероциклов. Оба типа продуктов представляют интерес для изучения в дальнейших трансформациях, а так же биологической активности. Впервые показана возможность получения пиридиновых бетаинов (цвиттер-ионные соединения) на основе трехкомпонентной конденсации соответствующих аацетиленовых альдегидов, малоновой кислоты и производных пиридина. Соискателем предложен метод синтеза нового класса полифункциональных пропаргилиденовых производных кислоты электрофильных реагентов – Мельдрума. Представлены результаты оптимизации условий реакций с образованием пушпульных диенов на основе ениновых производных кислоты Мельдрума и малоновой кислоты с хорошими выходами. Также было показано, электронодефицитные 1,3-енины могут селективно реагировать диазометаном в условиях отсутствия катализатора по двойной связи с образованием карбо- или гетероциклических производных. В этой же главе приводятся результаты первичного скрининга синтезированных соединений (продуктов Кнёвенагеля на основе малоновой кислоты и ее диметилового эфиров, производные кислоты Мельдрума, циклопропаны и азид) на цитотоксическую активность.

В третьей главе (С. 74 — 101) обсуждаются методы, использованные для достижения поставленных задач. Стратегия синтеза целевых молекул базируется на современных методологиях двух- и трехкомпонентных реакциях органического синтеза. Приведены описания физико-химических и спектральных характеристик полученных веществ. Привлечение современных физико-химических методов анализов свидетельствует о надежной идентификации и достоверности синтезированных соединений.

Обобщенные результаты работы полностью соответствуют поставленным задачам. И В достаточной мере отражают завершенность диссертационного исследования. Интерпретация полученных данных диссертантом представлена в четкой логической последовательности и позволяет однозначно установить новизну и практическую ценность работы. Диссертационная работа Сокова С.А. является законченным исследованием, выполненным на достаточно высоком научном уровне. Работа грамотно оформлена и соответствует требованиям ВАК РФ.

- 7. Подтверждение опубликования основных результатов диссертационной работы в научных изданиях. Основные результаты диссертационной работы отражены соискателем в 19 публикациях. Шесть статей опубликованы в ведущих рецензируемых научных журналах («Доклады РАН. Химия, науки о материалах», «Журнал органической химии» две статьи, «Известия Академии Наук. Серия химическая», «Химия гетероциклических соединений»), включенных в перечень ВАК Министерства науки и высшего образования РФ, в базы данных Scopus и Web of Science («Organic and Biomolecular Chemistry»), а также 13 тезисов докладов в материалах международных и всероссийских конференций.
- 8. Соответствие автореферата содержанию диссертации. Автореферат диссертации отражает основное содержание диссертационной работы, выполнен по форме и объему (всего 24 стр.) в соответствии с требованиями ВАК РФ. Содержание автореферата полностью соответствует основным положениям и выводам диссертации. Научные положения и выводы, сформулированные в диссертационной работе, теоретически обоснованы, подтверждены экспериментальным материалом и не вызывают сомнений.
- **9.** Замечания по диссертационной работе и автореферату диссертации. Диссертационная работа представляет собой завершенную научно-квалификационную работу, однако имеется ряд вопросов и замечаний:
- 1. Предложенный соискателем механизм образования тетрагидро-2Hпиранового производного 25 (стр. 42, схема 41; схема 9 автореферата) вызывает некоторые вопросы. Например, были ли проведены какие-либо доказывающие исследования или анализы, именно представленного механизма? предполагаемом механизме не учитывается енолизация (кето-енольная таутомерия) 2,4-пентандиона 21, в связи с чем, интермедиат $[21]^-$ следовало бы указать в виде усредненной резонансной структуры (амбидентного аниона). Не ясно, почему не расширили количество примеров в данной реакции, используя

другие пропинали?

- 2. На стр. 43 автор предлагает объяснение различия результатов циклоконденсации альдегида **3d** с дикетоном **21** через показатели основности и нуклеофильности используемых катализаторов ДБУ и пиперидина, однако приводит значения показателя кислотности pK_a , а не основности pK_b .
- 3. Приведенные результаты первичного скрининга на цитотоксическую активность полученных соединений проанализированы не в полной мере. К сожалению, в работе не обсуждено влияние функциональных групп тестируемых соединений на биологическую активность. В табл. 11, стр. 72 диссертации (табл. 1, стр. 22 автореферата) нет данных по препарату сравнения. В разделе «Экспериментальная часть» отсутствует описание методики определения цитотоксичности с помощью МТТ-теста, а так же не указан растворитель, в котором растворялись исследуемые образцы. Из текста диссертационной работы остается непонятным, чем руководствовался автор при выборе трех клеточных линий и соединений для скрининга? Не исследованные водорастворимые пиридиновые бетаины 11а-е в этом плане выглядят более перспективными кандидатами.
- 4. В разделе «Экспериментальная часть», для фторзамещенных соединений (например, продукт **28e**) в описании химических сдвигов ядер ¹³C отсутствуют значения констант спин-спинового взаимодействия ¹⁹F-¹³C.
- 5. В разделе «Список использованной литературы» диссертации, ссылка [15] цитируется дважды ([155]). В ссылках [3] и [261] пропущены соавторы. Приведенная схема 10 на стр. 17 не соответствует ссылке [97].
- 6. В диссертационной работе и в схемах реакций имеются опечатки: нумерация исходного соединения на схеме 1 начинается с 2; на стр. 20 (схема 18) название соединения 39 вместо «дитиоланов», должно быть «дитиан»; на стр. 39, в тексте, вместо нумераций соединений «2, 2b и 19b» должно быть «2d, 2d и 19d»; на стр. 43, в тексте, вместо нумераций «схемы 10 и 11», должно быть «схемы 40 и 43»; на стр. 57 вместо «со схемой 17», должно быть «со схемой 47»; на схеме 52 (стр. 63) имеется опечатка в нумерации соединений 34a-с; на рис. 9 (стр. 63) соединение 34 должно быть пронумеровано (*E*)-34b; на схеме 41 (схема 9 автореферата) отсутствует нумерация продукта первой стадии реакции пропаргилового спирта; на стр. 64 (схема 53) нумерация интермедиата должна быть [33·H]⁺, там же, вместо «-20» под стрелкой, должно быть «-33».

Указанные замечания носят редакционно-технический или дискуссионный характер, не затрагивают сути работы и не ставят под сомнение обоснованность основных выводов диссертации.

Заключение.

В целом диссертационная работа Сокова Сергея Александровича является самостоятельной и завершенной научно-квалификационной работой, в которой содержатся решения поставленных задач.

Диссертационная работа «Синтез, свойства и реакции присоединения новых ениновых акцепторов Михаэля», содержит научные результаты, имеющие существенное значение для развития химии α-ацетиленовых альдегидов, а также для развития методологий синтеза перспективных для практического применения активированных ениновых (пропаргилиденовых) соединений,

содержащих структурные элементы 1,3-дикарбонильных СН-кислот и их последующую диверсификацию с участием различных нуклеофильных реактантов. По своей научной новизне, практической и теоретической значимости, достоверности результатов полностью удовлетворяет требованиям, предъявляемым к диссертационным работам, и соответствует п. 9-14 «Положения о присуждении ученых степеней», утвержденного постановлением Правительства Российской Федерации от 24.09.2013 г. № 842 (в ред. Постановления Правительства РФ от 21.04.2016 № 335), и, соответственно, соискатель Соков Сергей Александрович заслуживает присуждения искомой ученой степени кандидата химических наук по специальности 1.4.3. Органическая химия (химические науки).

Официальный оппонент: кандидат химических наук

Ахмадиев Наиль Салаватович

по специальностям 02.00.03 — Органическая химия и 02.00.15 — Кинетика и катализ, научный сотрудник лаборатории молекулярного дизайна и биологического скрининга веществ-кандидатов для фарминдустрии Института нефтехимии и катализа — обособленного структурного подразделения Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук (ИНК УФИЦ РАН) Адрес: 450075, г. Уфа, проспект Октября, 141

Axuoguela H.C.

Моб. тел. 8-962-521-64-92 E-mail: nail-ahmadiev@mail.ru

03 мая 2023 г.

ПОДПИСЪ ЗАВЕРЯЮ

Учёный секретарь ИНКУФИЦРАН

K.X.H.

Кинзябаева Земфира Сабитовна